Selasa, 14 Juni 2016

Tugas 1 : Perangkat Media Pembuatan Aplikasi Multimedia

1.1 Perangkat keras
Perangkat keras adalah komponen fisik suatu komputer yang bersifat dapat dilihat, diraba dan berbentuk nyata yang membentuk satu sistem Personal Computer (PC).

1.2 Aplikasi multimedia

Multimedia aalah suatu sarana (media) yang didalamnya terdapat perpaduan(kombinasi) berbagai bentuk elemen informasi, seperti teks, graphics, animasi, video interaktif maupun suara sebagai pendukung untuk mencapai tujuannya yaitu menyampaikan informasi ata sekedar memberikan hiburan bagi target audience-nya. Multimedia sering digunakan dalam dunia hiburan seperti game.

Untuk materi lebih lengkapnya silahkan download di link ini

Kamis, 12 Mei 2016

Tugas 3 : Security Sistem Komputer & Protokol Internet (IP)

1.1     Lingkup Security Dalam Sistem Komputer

Keamanan komputer atau dalam Bahasa Inggris computer security atau dikenal juga dengan sebutan cybersecurity atau IT security adalah keamanan infromasi yang diaplikasikan kepada komputer dan jaringannya. Computer security atau keamanan komputer bertujuan membantu user agar dapat mencegah penipuan atau mendeteksi adanya usaha penipuan di sebuah sistem yang berbasis informasi. Informasinya sendiri memiliki arti non fisik.

Keamanan komputer adalah suatu cabang teknologi yang dikenal dengan nama keamanan informasi yang diterapkan pada komputer. Sasaran keamanan komputer antara lain adalah sebagai perlindungan informasi terhadap pencurian atau korupsi, atau pemeliharaan ketersediaan, seperti dijabarkan dalam kebijakan keamanan.





2.1     TCP/IP


TCP/IP (singkatan dari Transmission Control Protocol/Internet Protocol) adalah standarkomunikasi data yang digunakan oleh komunitas internet dalam proses tukar-menukar data dari satu komputer ke komputer lain di dalam jaringan Internet. Protokol ini tidaklah dapat berdiri sendiri, karena memang protokol ini berupa kumpulan protokol (protocol suite). Protokol ini juga merupakan protokol yang paling banyak digunakan saat ini. Data tersebut diimplementasikan dalam bentuk perangkat lunak (software) di sistem operasi. Istilah yang diberikan kepada perangkat lunak ini adalah TCP/IP stack.

Untuk materi lebih lengkapnya silahkan download di link ini 

Senin, 18 April 2016

Tugas Softskill 2 : Physical Layer

2.1     Pengertian Physical Layer
Physical Layer adalah layer terbawah dari layer OSI model dari jaringan komputer. Lapisan ini berhubungan dengan masalah listrik, prosedural, mengaktifkan, menjaga, dan menonaktifkan hubungan fisik. Lapisan ini juga berhubungan dengan tingkatan karakter, voltase, waktu perubahan voltase, jarak maksimal transmisi, konektor fisik, dan hal-hal lain yang berhubungan dengan fisik. Perangkat yang beroperasi di layer ini adalah hub, repeater, network adapter/network interface card, dan host bus adapter (digunakan di storage area network). Physical layer merupakan salah satu dari bagian OSI Layer.
OSI Layer adalah sebuah model arsitektural jaringan yang dikembangkan oleh badan International Organization for Standardization (ISO) di Eropa pada tahun 1977. OSI mempunyai sebuah kepanjangan, yaitu : Open System Interconnection yang merupakan kumpulan layer-layer yang tidak salingbergantungan namun saling berkaitan satu sama lainnya, maksud dari pernyataan tersebut adalah masing-masing layer sudah mempunyai Tugas dan tanggung jawab masing-masing dan saling mengisi satu sama lain, dan sama halnya dengan sebuah kerja sama kelompok. jika salah satu dari layer tersebut tidak digunakan berarti tidak akan terbentuk jaringan.

Untuk materi lebih jelasnya pembahasan tentang Physical Layer dan apa saja bentuk fisik dari Physical Layer, materi dapat didownload di link Berikut 

Jumat, 01 Januari 2016

CPU ( Central Processing Unit )

Sistem BUS
  1. Penghubung bagi keseluruhan komponen komputer dalam menjalankan tugasnya
  2. Komponen komputer :
  1. CPU
  2. Memori
  3. Perangkat I/O
Transfer data antar komponen komputer.
  1. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus
  2.  Melihat hasil eksekusi melalui monitor juga menggunakan sistem bus
  3. Kecepatan komponen penyusun komputer harus diimbangi kecepatan dan manajemen busyang baik
Mikroprosesor
·         Melakukan pekerjaan secara paralel
·         Program dijalankan secara multitasking
·         Sistem bus tidak hanya lebar tapi juga cepat
Interkoneksi komponen sistem komputer dalam menjalankan fungsinya
·         Interkoneksi bus
·         Pertimbangan–pertimbangan perancangan bus
Struktur Interkoneksi adalah Kompulan lintasan atau saluran berbagai modul  (CPU,Memori,I/O)
Struktur interkoneksi bergantung pada
  1. Jenis data
  2. Karakteristik pertukaran data
Jenis Data
Memori :
Memori umumnya terdiri atas N word memori dengan panjang yang sama. Masing–masing word diberi alamat numerik yang unik (0, 1, 2, …N-1). Word dapat dibaca maupun ditulis pada memori dengan kontrol Read dan Write. Lokasi bagi operasi dispesifikasikan oleh sebuah alamat.
Modul I/O :
Operasi modul I/O adalah pertukaran data dari dan ke dalam komputer. Berdasakan pandangan internal, modul I/O dipandang sebagai sebuah memori dengan operasi pembacaan dan penulisan. Seperti telah dijelaskan pada bab 6 bahwa modul I/O dapat mengontrol lebih dari sebuah perangkat peripheral. Modul I/O juga dapat mengirimkan sinyal interrupt.
CPU :
CPU berfungsi sebagai pusat pengolahan dan eksekusi data berdasarkan routine–routine program yang diberikan padanya. CPU mengendalikan seluruh sistem komputer sehingga sebagai konsekuensinya memiliki koneksi ke seluruh modul yang menjadi bagian sistem komputer.
Dari jenis pertukaran data yang diperlukan modul–modul komputer, maka struktur interkoneksi harus mendukung perpindahan data.
·         Memori ke CPU : CPU melakukan pembacaan data maupun instruksi dari memori.
·         CPU ke Memori : CPU melakukan penyimpanan atau penulisan data ke memori.
·         I/O ke CPU : CPU membaca data dari peripheral melalui modul I/O.
·         CPU ke I/O : CPU mengirimkan data ke perangkat peripheral melalui modul I/O.
·         I/O ke Memori atau dari Memori : digunakan pada sistem DMA
Sampai saat ini terjadi perkembangan struktur interkoneksi, namun yang banyak digunakan saat ini adalah sistem bus.
Sistem bus
  1. Digunakan secara tunggal
  2. Digunakan secara jamak,
Hal ini Tergantung karakteristik sistemnya
Interkoneksi Bus – Struktur Bus
Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran busdikatagorikan dalam tiga bagian, yaitu :
·         Saluran data
·         Saluran alamat
·         Saluran kontrol
Saluran Data
Lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran.
Tujuan : agar mentransfer word dalam sekali waktu.
Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit
Saluran Alamat (Address Bus)
·         Digunakan untuk menspesifikasi sumber dan tujuan data pada bus data.
·         Digunakan untuk mengirim alamat word pada memori yang akan diakses CPU.
·         Digunakan untuk saluran alamat perangkat modul komputer saat CPU mengakses suatu modul.
·         Semua peralatan yang terhubung dengan sistem komputer, agar dapat diakses harus memiliki alamat.
Contoh : mengakses port I/O, maka port I/O harus memiliki alamat hardware-nya
Saluran kontrol (Control Bus)
Digunakan untuk mengontrol bus data, bus alamat dan seluruh modul yang ada.
Karena bus data dan bus alamat digunakan oleh semua komponen maka diperlukan suatu mekanisme kerja yang dikontrol melalui bus kontrol ini.
Sinyal – sinyal kontrol terdiri atas
·         Sinyal pewaktuan adalah Sinyal pewaktuan menandakan validitas data dan alamat
·         Sinyal–sinyal perintah adalah Sinyal perintah berfungsi membentuk suatu operasi
Prinsip Operasi Bus
  1. Meminta penggunaan bus.
  2. Apabila telah disetujui, modul akan memindahkan data yang diinginkan ke modul yang dituju
Hierarki Multiple Bus
Bila terlalu banyak modul atau perangkat dihubungkan pada bus maka akan terjadi penurunan kinerja
Faktor – faktor :
  1. Semakin besar delay propagasi untuk mengkoordinasikan penggunaan bus.
  2. Antrian penggunaan bus semakin panjang.
  3. Dimungkinkan habisnya kapasitas transfer bus sehingga memperlambat data.
Arsitektur bus jamak
Prosesor, cache memori dan memori utama terletak pada bus tersendiri pada level tertinggi karena modul – modul tersebut memiliki karakteristik pertukaran data yang tinggi.
Pada arsitektur berkinerja tinggi, modul – modul I/O diklasifikasikan menjadi dua,
·         Memerlukan transfer data berkecepatan tinggi
·         Memerlukan transfer data berkecepatan rendah.
Modul dengan transfer data berkecepatan tinggi disambungkan dengan bus berkecepatan tinggi pula,
Modul yang tidak memerlukan transfer data cepat disambungkan pada bus ekspansi
Keuntungan hierarki bus jamak kinerja tinggi
  1. Bus berkecepatan tinggi lebih terintegrasi dengan prosesor.
  2. Perubahan pada arsitektur prosesor tidak begitu mempengaruhi kinerja bus
Aritmatika logic unit
Arithmatic Logical Unit (ALU), adalah salah satu bagian/komponen dalam sistem di dalam sistem komputer yang berfungsi melakukan operasi/perhitungan aritmatika dan logika (Contoh operasi aritmatika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR. ALU bekerja besama-sama memori, di mana hasil dari perhitungan di dalam ALU di simpan ke dalam memori.
          Perhitungan dalam ALU menggunakan kode biner, yang merepresentasikan instruksi yang akan dieksekusi (opcode) dan data yang diolah (operand). ALU biasanya menggunakan sistem bilangan biner two’s complement. ALU mendapat data dari register. Kemudian data tersebut diproses dan hasilnya akan disimpan dalam register tersendiri yaitu ALU output register, sebelum disimpan dalam memori.
          Pada saat sekarang ini sebuah chip/IC dapat mempunyai beberapa ALU sekaligus yang memungkinkan untuk melakukan kalkulasi secara paralel. Salah satu chip ALU yang sederhana (terdiri dari 1 buah ALU) adalah IC 74LS382/HC382ALU (TTL). IC ini terdiri dari 20 kaki dan beroperasi dengan 4×2 pin data input (pinA dan pinB) dengan 4 pin keluaran (pinF).
          Arithmatic Logical Unit (ALU), fungsi unit ini adalah untuk melakukan suatu proses data yang berbentuk angka dan logika, seperti data matematika dan statistika. ALU terdiri dari register-register untuk menyimpan informasi.Tugas utama dari ALU adalah melakukan perhitungan aritmatika (matematika) yang terjadi sesuai dengan instruksi program. Rangkaian pada ALU (Arithmetic and Logic Unit) yang digunakan untuk menjumlahkan bilangan dinamakan dengan Adder. Adder digunakan untuk memproses operasi aritmetika, Adder juga disebut rangkaian kombinasional aritmatika.
 Ada 3 jenis adder:
1)    Rangkaian Adder dengan menjumlahkan dua bit disebut Half Adder.
2)    Rangkaian Adder dengan menjumlahkan tiga bit disebut Full Adder.
3)    Rangkain Adder dengan menjumlahkan banyak bit disebut Paralel Adder
 1.    HALF ADDER
               Rangkaian Half Adder merupakan dasar penjumlahan bilangan Biner yang terdiri dari satu bit, oleh karena itu dinamai Penjumlah Tak Lengkap.
1.      jika A = 0 dan B = 0 dijumlahkan, hasilnya S ( Sum ) = 0.
2.      jika A = 0 dan B = 1 dijumlahkan, hasilnya S ( Sum ) = 1.
3.      jika A = 1 dan B = 1 dijumlahkan, hasilnya S ( Sum ) = 0
4.      jika A = 1 dan B =1 dijumlahkan, hasilnya S ( Sum ) = 0. dengan nilai pindahan cy(Carry Out) = 1
Dengan demikian, half adder memiliki 2 masukan ( A dan B ) dan dua keluaran (S dan Cy).
 2.    FULL ADDER
               Pada saat sekarang ini sebuah chip/IC dapat mempunyai beberapa ALU sekaligus yang memungkinkan untuk melakukan kalkulasi secara paralel. Salah satu chip ALU yang sederhana (terdiri dari 1 buah ALU) adalah IC 74LS382/HC382ALU (TTL). IC ini terdiri dari 20 kaki dan beroperasi dengan 4×2 pin data input (pinA dan pinB) dengan 4 pin keluaran (pinF).
              Arithmatic Logical Unit (ALU), fungsi unit ini adalah untuk melakukan suatu proses data yang berbentuk angka dan logika, seperti data matematika dan statistika. ALU terdiri dari register-register untuk menyimpan informasi.Tugas utama dari ALU adalah melakukan perhitungan aritmatika (matematika) yang terjadi sesuai dengan instruksi program. Rangkaian pada ALU (Arithmetic and Logic Unit) yang digunakan untuk menjumlahkan bilangan dinamakan deACE=”Verdana, sans-serif”>Sebuah Full Adder menjumlahkan dua bilangan yang telah dikonversikan menjadi bilangan-bilangan biner. Masing-masing bit pada posisi yang sama saling dijumlahkan. Full Adder sebagai penjumlah pada bit-bit selain yang terendah. Full Adder menjumlahkan dua bit input ditambah dengan nilai Carry-Out dari penjumlahan bit sebelumnya. Output dari Full Adder adalah hasil penjumlahan (Sum) dan bit kelebihannya (carry-out).
 3.    PARALEL  ADDER
               Rangkaian Parallel Adder adalah rangkaian penjumlah dari dua bilangan yang telah dikonversikan ke dalam bentuk biner. Anggap ada dua buah register A dan B, masing-masing register terdiri dari 4 bit biner : A3A2A1A0 dan B3B2B1B0.
               Rangkaian Parallel Adder terdiri dari Sebuah Half Adder (HA) pada Least Significant Bit (LSB) dari masing-masing input dan beberapa Full Adder pada bit-bit berikutnya. Prinsip kerja dari Parallel Adder adalah sebagai berikut : penjumlahan dilakukan mulai dari LSB-nya. Jika hasil penjumlahan adalah bilangan desimal “2” atau lebih, maka bit kelebihannya disimpan pada Cout, sedangkan bit di bawahnya akan dikeluarkan pada Σ. Begitu seterusnya menuju ke Most Significant Bit (MSB)nya.
               Tugas lain dari ALU adalah melakukan keputusan dari operasi sesuai dengan instruksi program yaitu operasi logika (logical operation). Operasi logika meliputi perbandingan dua buah elemen logika dengan menggunakan operator logika.
Sumber : 



Arsitektur Instruksi

Jenis instruksi
1.Data procecessing: Arithmetic dan Logic Instructions
data processing adalah jenis pemrosesan yang dapat mengubah data menjadi informasiatau pengetahuan. Pemrosesan data ini sering menggunakan komputer sehingga bisa berjalan secara otomatis. Setelah diolah, data ini biasanya mempunyai nilai yang informatif jika dinyatakan dan dikemas secara terorganisir dan rapi, maka istilah pemrosesan data sering dikatakan sebagai sistem informasi. Kedua istilah ini mempunyai arti yang hampir sama, pemrosesan data mengolah dan memanipulasi data mentah menjadi informasi (hasil pengolahan), sedangkan sistem informasi memakai data sebagai bahan masukan dan menghasilkan informasi sebagai produk keluaran.

2. Data storage: Memory instructions
sering disebut sebagai memori komputer, merujuk kepada komponen komputer, perangkat komputer, dan media perekaman yang mempertahankan data digital yang digunakan untuk beberapa interval waktu. Penyimpanan data komputer menyediakan salah satu tiga fungsi inti dari komputer modern, yakni mempertahankan informasi. Ia merupakan salah satu komponen fundamental yang terdapat di dalam semua komputer modern, dan memiliki keterkaitan dengan mikroprosesor, dan menjadi model komputer yang digunakan semenjak 1940-an.
Dalam penggunaan kontemporer, memori komputer merujuk kepada bentuk media penyimpanan berbahan semikonduktor, yang dikenal dengan sebutan Random Access Memory (RAM), dan kadang-kadang dalam bentuk lainnya yang lebih cepat tapi hanya dapat menyimpan data secara sementara. Akan tetapi, istilah "computer storage" sekarang secara umum merujuk kepada media penyimpanan massal, yang bisa berupa cakram optis, beberapa bentuk media penyimpanan magnetis (seperti halnya hard disk) dan tipe-tipe media penyimpanan lainnya yang lebih lambat ketimbang RAM, tapi memiliki sifat lebih permanen, seperti flash memory.

3. Data Movement: I/O instructions
Data Movement
Proses data movement ini adalah memindahkan (dapat diakatakan membackup juga) data – data dari database yang berupa data, indeks, grand, schema, dan lain – lain ketempat baru. Tempat baru ini bisa ke dalam database baru atau memang untuk dibackup saja.

Data movement terdiri dari 2 bagian besar yaitu :
·                     Load & Upload [difokuskan untuk memindahkan data yang berupa indeks atau data itu sendiri alias isi dari database tersebut]
·                     Export & Import [memindahkan data secara lengkap, mulai dari grand, schema, dan seluruhnya]

Jika dilihat, load tersebut behubungan dengan import dan upload berhubungan dengan export

Load berfungsi untuk memasukan data / transaksi ke sebuah table. Dapat dikatakan juga insert, replace, atau update. Sedangkan upload berfungsi untuk membuat dari data table ke fisik / file. Kelemahan load adalah dalam prosesnya bisa saja terjadi data yang tidak berpindah secara sempurna.

Upload Parameter
·                     Limit [membatasi beberapa record]
·                     Sample [mencari sample yang telah ditentukan]
·                     When [berdasarkan kondisi]

Dan pada upload, hanya satu parameter saja yang dapat berjalan alias tak bisa berjalan bersamaan apabila parameternya lebih dari 1.

Bulk Data Movement (Software Pendukung)
·                     ETL [Extrat Transform Load], software yang focus terhadap data warehouse
·                     Replication and Propagation, software yang memonitoring source database dan target, dan yang dihasilkan oleh software ini adalah pencatatatn log.

Perlu diperhatikan juga hak akses dalam load & unload, import & export minimal adalah akses select.

Distribution Database
Dalam distribution database terdapat 3 istilah yaitu :
·                     Autonomi [idependent], untuk tabel umum akses yang diberikan berbeda dari setiap user.
·                     Isolation [stand alone], untuk tabel khusus (privacy) itu terpisah dari user.
·                     Transparancy [all user], akses tabel terpisah dari user tetapi user masih dapat mengaksesnya.

Lawan dari database terdistribusi adalah database terpusat. Server yang terpusat memang diuntungkan dalam sisi maintenance sedangkan server terdistribusi lebih rumit dalam proses integrasinya.

Jika database terdistribusi paling tidak membutuhkan Sumber Daya Manusia [SDM] yang baik, network yang lebih baik karena permasalahan network itu sangat fatal dan biasanya permasalahannya tidak jauh – jauh dari permasalahan traffic network. Dan yang tidak boleh dilupakan adalah request dan respon.


4. Control: Test and branch instructions
Unit kendali (bahasa Inggris: Control Unit - CU) adalah salah satu bagian dari CPU yang bertugas untuk memberikan arahan/kendali/ kontrol terhadap operasi yang dilakukan di bagian ALU (Arithmetic Logical Unit) di dalam CPU tersebut. Output dari CU ini akan mengatur aktivitas dari bagian lainnya dari perangkat CPU tersebut.

Pada awal-awal desain komputer, CU diimplementasikan sebagai ad-hoc logic yang susah untuk didesain. Sekarang, CU diimplementasikan sebagai sebuah microprogram yang disimpan di dalam tempat penyimpanan kontrol (control store). Beberapa word dari microprogram dipilih oleh microsequencer dan bit yang datang dari word-word tersebut akan secara langsung mengontrol bagian-bagian berbeda dari perangkat tersebut, termasuk di antaranya adalah register, ALU, register instruksi, bus dan peralatan input/output di luar chip. Pada komputer modern, setiap subsistem ini telah memiliki kontrolernya masing-masing, dengan CU sebagai pemantaunya (supervisor).

Tugas CU
Tugas dari CU adalah sebagai berikut:
Mengatur dan mengendalikan alat-alat input dan output.
Mengambil instruksi-instruksi dari memori utama.
Mengambil data dari memori utama kalau diperlukan oleh proses.
Mengirim instruksi ke ALU bila ada perhitungan aritmatika atau perbandingan logika serta mengawasi kerja.
Menyimpan hasil proses ke memori utama.

Macam-macam CU
Single-Cycle CU
Proses di CUl ini hanya terjadi dalam satu clock cycle, artinya setiap instruksi ada pada satu cycle, maka dari itu tidak memerlukan state. Dengan demikian fungsi boolean masing-masing control line hanya merupakan fungsi dari opcode saja. Clock cycle harus mempunyai panjang yang sama untuk setiap jenis instruksi. Ada dua bagian pada unit kontrol ini, yaitu proses men-decode opcode untuk mengelompokkannya menjadi 4 macam instruksi (yaitu di gerbang AND), dan pemberian sinyal kontrol berdasarkan jenis instruksinya (yaitu gerbang OR). Keempat jenis instruksi adalah “R-format” (berhubungan dengan register), “lw” (membaca memori), “sw” (menulis ke memori), dan “beq” (branching). Sinyal kontrol yang dihasilkan bergantung pada jenis instruksinya. Misalnya jika melibatkan memori ”R-format” atau ”lw” maka akan sinyal ”Regwrite” akan aktif. Hal lain jika melibatkan memori “lw” atau “sw” maka akan diberi sinyal kontrol ke ALU, yaitu “ALUSrc”. Desain single-cycle ini lebih dapat bekerja dengan baik dan benar tetapi cycle ini tidak efisien.

Multi-Cycle CU
Berbeda dengan unit kontrol yang single-cycle, unit kontrol yang multi-cycle lebih memiliki banyak fungsi. Dengan memperhatikan state dan opcode, fungsi boolean dari masing-masing output control line dapat ditentukan. Masing-masingnya akan menjadi fungsi dari 10 buah input logic. Jadi akan terdapat banyak fungsi boolean, dan masing-masingnya tidak sederhana. Pada cycle ini, sinyal kontrol tidak lagi ditentukan dengan melihat pada bit-bit instruksinya. Bit-bit opcode memberitahukan operasi apa yang selanjutnya akan dijalankan CPU; bukan instruksi cycle selanjutnya.

 teknik pengalamatan
Setelah membahas memoricacheset instruksi. Ada baiknya sahabat wikara mengetahui mode pengalamatan pada instruksi dalam memori. Mode pengalamatan merupakan metode penentuan alamat operand pada instruksi. Operand instruksi diletakan pada memori utama dan register CPU. Tujuan yang mempengaruhi arsitektur komputer ketika memilih mode pengalamatan:
  • Mengurangi panjang instruksi dengan mempunyai medan yang pendek untuk alamat.
  • Menyediakan bantuan yang tangguh kepada pemrogram untuk penanganan data kompleks seperti pengindeksan sebuah array, control loop, relokasi program dan sebagainya.
Teknik Pengalamatan
  1. Immediate Addressing
  2. Direct Addressing
  3. Indirect Addressing
  4. Register addressing
  5. Register indirect addressing
  6. Displacement addressing
  7. Stack addressing
A. Immediate Addressing (Pengalamatan Segera)
Adalah bentuk pengalamatan yang paling sederhana.
Penjelasan :
  • Operand benar-benar ada dalam instruksi atau bagian dari intsruksi
  • Operand sama dengan field alamat
  • Umumnya bilangan akan disimpan dalam bentuk complement dua
  • Bit paling kiri sebagai bit tanda
  • Ketika operand dimuatkan ke dalam register data, bit tanda digeser ke kiri hingga maksimum word data
Keuntungan :
  • Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand
  • Menghemat siklus instruksi sehingga proses keseluruhanakan akan cepat
Kekurangan :
  • Ukuran bilangan dibatasi oleh ukuran field
Contoh :
ADD 7 ; tambahkan 7 pada akumulator
B. Direct Addressing (Pengalamatan Langsung)
Penjelasan :
  • Teknik ini banyak digunakan pada komputer lama dan komputer kecil
  • Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulus khusus
Kelebihan :
  • Field alamat berisi efektif address sebuah operand
Kekurangan :
  • Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word
C. Indirect Addressing (Pengalamatan tak langsung)
Penjelasan :
  • Merupakan mode pengalamatan tak langsung
  • Field alamat mengacu pada alamat word di alamat memori, yang pada gilirannya akan berisi alamat operand yang panjang
Kelebihan :
  • Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi
Kekurangan :
  • Diperlukan referensi memori ganda dalam satu fetch sehingga memperlambat proses operasi
D. Register addressing (Pengalamatan Register)
Penjelasan :
  • Metode pengalamatan register mirip dengan mode pengalamatan langsung
  • Perbedaanya terletak pada field alamat yang mengacu pada register, bukan pada memori utama
  • Field yang mereferensi register memiliki panjang 3 atau 4 bit, sehingga dapat mereferensi 8 atau 16 register general purpose
Keuntungan :
  • Diperlukan field alamat berukuran kecil dalam instruksi dan tidak diperlukan referensi memori
  • Akses ke register lebih cepat daripada akses ke memori, sehingga proses eksekusi akan lebih cepat
Kerugian :
  • Ruang alamat menjadi terbatas
E. Register indirect addressing (Pengalamatan tak-langsung register)
Penjelasan :
  • Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung
  • Perbedaannya adalah field alamat mengacu pada alamat register
  • Letak operand berada pada memori yang dituju oleh isi register
  • Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung
  • Keterbatasan field alamat diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak
  • Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung
F. Displacement addressing
Penjelasan :
  • Menggabungkan kemampuan pengalamatan langsung dan pengalamatan register tidak langsung
  • Mode ini mensyaratkan instruksi memiliki dua buah field alamat, sedikitnya sebuah field yang eksplisit
  • Operand berada pada alamat A ditambahkan isi register
  • Tiga model displacement
  • Relative addressing : register yang direferensi secara implisit adalah Program Counter (PC)
  • Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat
  • Memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya
  • Base register addressing : register yang direferensi berisi sebuah alamat memori dan field alamat berisi perpindahan dari alamat itu
  • Referensi register dapat eksplisit maupun implisit
  • Memanfaatkan konsep lokalitas memori
  • Indexing  : field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut
·         Merupakan kebalikan dari mode base register
  • Field alamat dianggap sebagai alamat memori dalam indexing
  • Manfaat penting dari indexing adalah untuk eksekusi program-program iteratif
G. Stack addressing
Penjelasan :
  • Stack adalah array lokasi yang linier = pushdown list = last-in-firs-out
  • Stack merupakan blok lokasi yang terbaik
  • Btir ditambahkan ke puncak stack sehingga setiap blok akan terisi secara parsial
  • Yang berkaitan dengan stack adalah pointer yang nilainya merupakan alamat bagian paling atas stack
  • Dua elemen teratas stack dapat berada di dalam register CPU, yang dalam hal ini stack pointer mereferensi ke elemen ketiga stack
  • Stack pointer tetap berada dalam register
  • Dengan demikian, referensi-referensi ke lokasi stack di dalam memori pada dasarnya merupakan pengalamatan register tidak langsung.
Desain Set Instruksi
Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah:
1.                Kelengkapan set instruksi
2.                Ortogonalitas (sifat independensi instruksi)
3.                Kompatibilitas : – Source code compatibility – Object code Compatibility
Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut:
1.                Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit operasinya
2.                Data Types: tipe/jenis data yang dapat olah Instruction Format: panjangnya, banyaknya alamat, dsb.
3.                Register: Banyaknya register yang dapat digunakan 4.Addressing: Mode pengalamatan untuk operand


Sumber :